Journal of Chemical and Pharmaceutical Sciences

Instant tips for right and effective approach to solve HPLC trouble shooting

P. Ravisankar*^{1,2}, G. Rajyalakshmi¹, CH. Devadasu¹, G. Devala Rao³

¹Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram - 631561 (T.N.) India.

²Department of Pharmaceutical Analysis and Quality Assurance, Vignan Pharmacy College, Vadlamudi, Guntur – 522213 (A.P) India.

³Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.

*Address for Correspondence: E-mail: banuman35@gmail.com, Mobile: 09000199106

ABSTRACT

HPLC is one of the prominent and potent analytical tool regularly employed for the analysis of drugs in pharmaceutical formulations. Although HPLC method development has been improved by advanced innovative modifications in HPLC column technology and instrumentation day by day even though problems still arise from many sources. Generally when ever more sophisticated unit is used problems cropped up affecting overall system performance each troubled component which needs to be settled by leaps and bounds. In this review article, different trouble shooting common problems are discussed and solutions to those problems while performing method development. For easy understanding and reference the trouble shooting problems encountered with the HPLC system are organized into five major categories such as pressure abnormalities, leaks, problems with the chromatograms, injector problems and remedies and lastly other problems identified by smell, sight and sound and to be settle them and they are presented in the guide in the form of tables apart from textual matter for easy reference.

Key words: Possible causes, Solution, HPLC troubleshooting

INTRODUCTION

The practice of HPLC is now 45 years old. Certainly HPLC (Skoog DA, 2011), (Gurdeep R.Chatwal, 2002), (B.K Sharma, 2013), (Sethi P.D, 2012) is one of the most outstanding analytical techniques for identification and quantification of drugs, either in their active pharmaceutical ingredient or in their formulations throughout the process of their discovery, manufacturing and development. Its chief aim is to provide timely logical process when troubleshooting maximizes the system operation to get good chromatographic practices. Wherever necessary figures are inducted for understanding lucidly. This enables the guide to use quickly and efficiently by the operators with varied experience. Quick tips are included at the end of each section to resolve trouble shooting rapidly even by the less experienced HPLC users also. Analytical methods must be validated to give reliable data for regulatory submissions. These methods are essential for a number of purposes, including testing for QC release, testing of stability samples, testing of reference materials and to provide data to support specifications. Although HPLC method development (Azim Md, 2013), (Vibha Guptha, 2012), (Ravisankar P, 2014), (Ranjit singh, 2013), (Kaushal C, 2010) has been improved by advances column technology and instrumentation problems still arise. The main purpose of this guide is to utilize an easy reference tool to enable to meet suitably the trouble shooting problems (Ravisankar M, 2012), (Gupta V, 2012), Charde MS, 2014), (Runser Dj, 2001), (Christianson, 1997), (Berry VV, 1983), Dolan J.w, 1996), (Shoup R, 1989), (Dolan J.W, 1984, 1985, 1989) immediately in the day to day to run the HPLC system perfectly.

Troubleshooting strategy: Any troubleshooting strategy involves 5 steps, they are

- 1. Identification of the problem
- 2. Awareness of the causes of the problem
- 3. Isolation of the exact cause of the problem
- 4. Rectifying the problem if able

5. Returning the unit to routine use or referring the problem to your maintenance manager

Trouble shooting process: The following systematic approach should be followed logically so that the exact cause of the problem can be found.

- 1. To gather the facts.
- 2. To check the simplest things first.
- 3. To compare the performance obtained to the expected performance.
- 4. To enlist possible causes.
- 5. Work through the possible causes step-by-step duly checking the outcome from any changes done.

July-September 2014

Journal of Chemical and Pharmaceutical Sciences

Locating and correcting the problem: A systematic approach is best to identify any problems when troubleshooting the HPLC system. This guide is organized into five major categories of symptoms to help quickly identify the source of the various problems.

- Pressure abnormalities are discussed in Table 1-8.
- Discussion on leaks shown in Table 9-13.
- Problems with the chromatograms are shown in Table14 -36 and Figures 1 to 15.
- Discussion on Injector problems and remedies in Table 37-40.
- Discussion on other problems detected by smell, sight, and sound in Table 41- 52.

Prevention: Many liquid chromatography (LC) problems can be prevented with routine maintenance. For example, replacing pump seals at regular intervals to every pump-seal failure and its associated problems as well as preventive maintenance practices to reduce their frequency.

2. Abnormal pressure: A change in the operating pressure is a sign that there may be a problem. The solution is indicated in the last column against each relevant potential cause to rectify the problem perfectly for proper functioning of the system.

1 8/	
Potential cause	Solution
1. Power off	1. Turn on power
2. Fuse blown	2. Replace fuse
3. Controller setting or failure	3. a. Verify proper setting
	b. Repair or replace controller
4. Broken piston	4. Replace piston
5. Air trapped in pump head	5. Degas solvents: bleed air from
	pump, prime pump
6. Insufficient mobile phase	6. a. Replenish reservoir
	b. Replace inlet frit if blocked
7. Faulty check valve(s)	7. Replace check valve(s)
8. Major leak	8. Tighten or replace fittings
Table.2.No pressure reading, flow is normal.	

Table.1.No pressure reading, no flow

Table.2.No pressure reading, flow is normal.	
Potential cause	Solution
1. Faulty meter	1. Replace meter
2. Faulty pressure transducer	2. Replace transducer

Table.3.Steady high pressure

Potential cause	Solution
1. Flow rate set too high	1. Adjust setting
2. Blocked column frit	2. a. Back flush column (if permitted)
	b. Replace frit
	c. Replace column
3. Improper mobile phase;	3. a. Use correct mobile phase
precipitated buffer	b. Wash column
4. Improper column	4. Use proper column
5. Injector blockage	5. Clear blockage or replace injector
6. Column temperature too low	6. Raise temperature
7. Controller malfunction	7. Repair or replace controller
8. Blocked guard column	8. Remove/replace guard column
9. Blocked in-line filter	9. Remove/replace in-line filter

Tustern steady to a pressure	
Potential cause	Solution
1. Flow set too low	1. Adjust flow rate
2. Leak in system	2. Locate leak and correct
3. Improper column	3. Use proper column
4. Column temperature too high	4. Lower temperature
5. Controller malfunction	5. Repair or replace controller

Table.4. Steady low pressure

Potential cause	Solution
1. Flow rate set too high	1. Adjust setting
2. Blocked column frit	2. a. Back flush column (if permitted)
	b. Replace frit
	c. Replace column
3. Improper mobile phase;	3. a. Use correct mobile phase
precipitated buffer	b. Wash column
4. Improper column	4. Use proper column
5. Injector blockage	5. Clear blockage or replace injector
6. Column temperature too low	6. Raise temperature
7. Controller malfunction	7. Repair or replace controller
8. Blocked guard column	8. Remove/replace guard column
9. Blocked in-line filter	9. Remove/replace in-line filter

Table.5.Pressure climbing

Table.6.Pressure dropping to zero

Potential cause	Solution
1. Power off	1. Turn on power
2. Fuse blown	2. Replace fuse
3. Controller setting or failure	3. a. Verify proper setting
	b. Repair or replace controller
4. Broken piston	4. Replace piston
5. Air trapped in pump head	5. Degas solvents: bleed air from
	pump, prime pump
6. Insufficient mobile phase	6. a. Replenish reservoir
	b. Replace inlet frit if blocked
7. Faulty check valve(s)	7. Replace check valve(s)
8. Major leak	8. Tighten or replace fittings
9. Faulty meter	9. Replace meter
10. Faulty pressure transducer	10. Replace transducer

Table.7.Pressure dropping, but not to zero

Potential cause	Solution
1. Flow set too low	1. Adjust flow rate
2. Leak in system	2. Locate leak and correct
3. Improper column	3. Use proper column
4. Column temperature too high	4. Lower temperature
5. Controller malfunction	5. Repair or replace controller

Potential cause	Solution
1. Air in pump	1. a. Degas solvent
	b. Bleed air from pump
2. Faulty check valve(s)	2. Replace check valve(s)
3. Pump seal failure	3. Replace pump seal
4. Insufficient degassing	4. a. Degas solvent
	b. Change degassing methods (use degasser on-line
	degasser)
5. Leak in system	5. Locate leak and correct
6. Using gradient elution	6. Pressure cycling is normal due to viscosity changes

Table.8.Pressure cycling

3. Leaks: Leaks are usually stopped by proper suitable tightening or replacing the loose fittings. One must be aware, particularly that if metal compression fittings are over tightened may allow leaks and plastic finger tights may wear out quickly. If a fitting leak does not stop when the fitting is tightened a little, take off the fitting out and inspect the damage (e.g., distorted ferrule or particles on the sealing surface) damaged fittings should be discarded and replaced.

Potential cause	Solution
1. Loose fitting	1. Tighten
2. Stripped fitting	2. Replace
3. Over tightened fitting	3. a. Loosen and retighten
	b. Replace
4. Dirty fitting	4. Disassemble and clean

Table.9.Leaky fittings

Tubici of Louis at pump	
Potential cause	Solution
1. Loose check valves	1. a. Tighten check valve (do not over tighten)
	b. Replace check valve
2. Loose fittings	2. Tighten fittings (do not over tighten)
3. Mixer seal failure	3. a. Replace mixer seal
	b. Replace mixer
4. Pump seal failure	4. Repair or replace
5. Pressure transducer failure	5. Repair or replace
6. Pulse damper failure	6. Replace pulse damper
7. Proportioning valve failure	7. a. Check diaphragms, replace if leaky
	b. Check for fitting damage, replace
8. Purge valve	8. a. Tighten valve
	b. Replace purge valve

Table.10.Leaks at pump

Table.11.Injector leaks

Potential cause	Solution
1. Rotor seal failure	1. Rebuild or replace injector
2. Blocked loop	2. Replace loop
3. Loose injection-port seal	3. Adjust
4. Improper syringe-needle diameter	4. Use correct syringe
5. Waste-line siphoning	5. Keep waste line above surface waste
6. Waste-line blockage	6. Replace waste line

Table.12.Column leaks	
Potential cause	Solution
1. Loose end fitting	1. Tighten end fitting
2. Column packing in ferrule	2. Disassemble, rinse ferrule, reassemble
3. Improper frit thickness	3. Use proper frit (see Frit selection guide
	chart)

Table.13.Detector leaks.

Potential cause	Solution
1. Cell gasket failure	1. a. Prevent excessive backpressure
	b. Replace gasket
2. Cracked cell window(s)	2. Replace window(s)
3. Leaky fittings	3. Tighten or replace
4. Blocked waste line	4. Replace waste line
5. Blocked flow cell	5. Rebuild or replace

4. Problems with the chromatogram: Many problems in an HPLC system is sign to show the changes in the chromatograms. Some of these can be solved by replacing the non functioning components of equipment or effecting modifications to the assay procedures. Selection of the suitable column and mobile phase are key parts to obtain good chromatography.

Figure 1. Peak tailing.

Due to secondary retention effects, Residual silanol interactions, and small peak elution on tail of large peak yields some irregular peaks tail.

Due to extra column effects, contamination build up on column inlet, heavy metals and bad column yields all imperfect peaks tails.

Potential cause	Solution	
1. Blocked frit	1. a. Reverse flush column (if allowed)	
	b. Replace inlet frit	
	c. Replace column	
2. Column void	2. a. Fill void	
3. Interfering peak	3. a. Use longer column	
	b. Change mobile-phase and/or column/ selectivity	
4. Wrong mobile-phase pH	4. a. Adjust pH	
	b. For basic compounds, a lower pH usually provides	
	more symmetric peaks	
5. Sample reacting with active sites	5. a. Add ion pair reagent or volatile basic	
	b. Change column modifier	

Table.14.Peak tailing

Figure 2. Peak fronting

Table.	.15.P	eak	fron	ting	ρ

Potential cause	Solution	
1. Low temperature	1. Increase column temperature	
2. Wrong sample solvent	2. Use mobile phase for injection solvent	
3. Sample overload	3. Decrease sample concentration	

Figure.3.Split peaks

Table	e.16.S	plit	peaks
			1

Potential cause	Solution
1. Contamination on guard or	1. a. Remove guard column and attempt analysis
analytical column inlet	b. Replace guard if necessary
	c. If analytical column is obstructed, reverse and flush
	d. If problem persists, column may be fouled with
	strongly retained contaminations
	e. Use appropriate restoration procedure
	f. If problem persists, inlet is probably plugged
	g. Change frit or replace column
2. Sample solvent incompatible with	2. a. Change solvent; whenever possible
mobile phase	b. Inject samples in mobile phase

Figure.4. Distortion of larger peaks

ISSN: 0974-2115 Journal of Chemical and Pharmaceutical Sciences

Table.17. Distortion of larger peaks

Potential cause	Solution	
1. Sample overload	1. Reduce sample size	

Table.18.Distortion of early peaks

Potential cause	Solution	
1. Wrong injection solvent	1. a. Reduce injection volume	
	b. Use weaker injection solvent	

Table.19.Tailing, early peaks more than later ones

Potential cause	Solution	
1. Extra-column effects	1. a. Re plumb system (shorter, narrower tubing)	
	b. Use smaller volume detector cell	

Table.20.Increased tailing as k' increases		
Potential cause	Solution	
1. Secondary retention effects, reversed-phase mode	1. a. Add tri ethylamine (basic samples)	
	b. Add acetate (acidic samples)	
	c. Add salt or buffer (ionic samples)	
	d. Try a different column	
2. Secondary retention effects, normal-phase mode	2. a. Add tri ethylamine (basic compounds)	
	b. Add acetic acid	
3. Secondary retention effects, ion-pair	3. a. Add tri ethylamine (basic samples)	

Table.21.Acidic or basic peaks tail

Potential cause	Solution
1. Inadequate buffering	1. a. Use 50–100 mm buffer concentration
	b. Use buffer with pKa equal to pH of mobile phase

Figure 5. Extra peaks

I upic ZZ i Linti u poumpi	Table	22.	Extra	peaks.
-----------------------------------	-------	-----	-------	--------

Potential cause	Solution
1. Other components in sample	1. Normal
2. Late-eluting peak from previous	2. a. Increase run time or gradient slope
injection	b. Increase flow rate
3. Vacancy or ghost peaks	3. a. Check purity of mobile phase
	b. Use mobile phase as injection solvent
	c. Reduce injection volume

Table.23. Retention time drifts		
Potential cause	Solution	
1. Poor temperature control	1. Thermostat column	
2. Mobile phase changing	2. Prevent change (evaporation, reaction etc)	
3. Poor column equilibration	3. Allow more time for column equilibration between	
	runs	

Potential cause	Solution
1. Flow rate change	1. Reset flow rate
2. Air bubble in pump	2. Bleed air from pump
3. Improper mobile phase	3. a. Replace with proper mobile phase
	b. Set proper mobile phase mixture on controller

Baseline irregularities:

Time Air Bubble in Flow Cell

Figure6.Non-cyclic noise-fluid path problems

Table.25.Non-cyclic noise-fluid path problems		
Potential cause	Solution	
1. Air in mobile phase, detector cell, or	1. a. Degas mobile phase	
pump	b. Flush system to remove air from	
	detector cell or pump	
2. column contamination	2. Replace with a new column	
3. Air bubbles in the flow path	3. Prime the pump once again and ensure that	
	all solvents thoroughly degassed	

Figure.7.Non-cyclic noise-detector electronics problems

ISSN: 0974-2115

Journal of Chemical and Pharmaceutical Sciences

rubicizon (on cyclic holse acteetor electronics problems		
Potential cause	Solution	
1. Detector not stable	1. Allow sufficient time to stabilize	
2. Detector lamp malfunction	2. If the lamp energy is below that	
	recommended for normal detector operation	
	replace the lamp	
3. Contaminated/ Scratched reference	3. Replace the working electrode	
electrode		

Table.26.Non-cyclic noise-detector electronics problems

Figure.8.Cyclic noise-detector related problems

Table.27.Cyclic noise-detector related problems.

Potential cause	Solution
1.Long term detector temperature problems	1. The heater cycles on and off to maintain
	the detector temperature
2. Ambient temperature fluctuations	2. Stabilize the air temperature around the
	instrument and allow the system to return to
	equilibrium
3. Contaminated reference electrode	3. Replace the working electrode

Broad peaks: Due to loss of column efficiency, column void and large injection volume causes all peaks become broad which shows imperfect results.

Owing to Possible late elution from previous sample (ghost peak), high molecular weight sample- protein or polymer causes to become some peaks broad.

Figure.9.Broad peaks

Potential cause	Solution
1. Mobile-phase composition	1. Prepare new mobile phase
changed	
2. Mobile-phase flow rate too low	2. Adjust flow rate
3. Leaks (especially between column	3. a. Check system for injector leaks
and detector)	Check for column leaks; Check for detector leaks
	b. Check for loose fittings
	c. Check pump for leaks, salt build-up and unusual noises
	d. Change seals if necessary
4. Detector settings incorrect	4. Adjust settings
5. Extra-column effects:	5. a. Inject smaller column (e.g., 10 μ L vs. 100 μ L) or 1:10
a. Column overloaded	and 1:100 dilutions of sample
b. Detector response time or cell	b. Reduce response time or use smaller cell
volume too large	a Use as short a piece of 0.007, 0.010 inch ID tubing as
detector too long or ID	practical
too large	practical
d. Recorder response time too	d. Reduce response time
high	
6. Buffer concentration too low	6. Increase concentration
7. Guard column contaminated	7. Replace guard column
8. Column contaminated/worn out;	8. a. Replace column with new one of same type
low plate number	b. If new column provides symmetrical peaks, flush old
	column with strong solvent
9. Void at column inlet	9. Open inlet end and fill void or replace column
10. Peak represents two or more	10. Change column type to improve separation
Poorly resolved solvents	
11. Column temperature too low	11. Increase temperature; do not exceed 75°C unless higher
	temperatures are acceptable to column manufacturer
12. Detector time constant too large	12. Use smaller time constant

Figure.10.No peaks

Table.22: 10 peaks		
Potential cause	Solution	
1. Wrong sample being injected	1. Inject correct sample	
2. The detector not being switched on (or)	2. Switch on the detector	
blockage between the injector and detector		
lines		
3. Sample or mobile phase preparation has	3. preparation of mobile phase or sample	
been performed correctly	has been performed correctly	

Figure.11.Smaller than expected peaks

Table.30. Smaller th	an expected peaks
----------------------	-------------------

Potential cause	Solution	
1. Wrong injection volume	1. Inject the correct volume	
2. Detector problem	2. Zero the detector output	
3. Sample too viscous	3. Dilute the sample or decrease the rate at which the syringe draws the sample	
4. Sample loop incorrect	4. Change the sample loop to the correct volume in the one in-situ is incorrect	

Table 31. H	Early eluting	peaks broad.
-------------	---------------	--------------

Potential cause	Solution
1. Sample over load	1.Dilute the sample or inject a lower volume
	to stop equilibrium disruption
2. Detector time constant incorrect	2.Correct the detector time constant

Figure.13.Flat topped peaks

Tab	le.32.Flat	topped	peaks
I UD	COLL IUU	topped	peans

Potential cause	Solution
1. Large injection volume of dilute sample	1. Injection of small volume of dilute sample
2. Recorder input error	2. Adjust the recorder input voltage

Figure.14.Negative peaks

Table.33.Negative peaks	
Potential cause	Solution
1. Highly adsorbing mobile phase	1. Dissolve the sample in mobile phase
2. Ion pair separation only	2. Dissolve the sample in mobile phase

Table.34.Loss of resolution

Potential cause	Solution
1. Mobile phase contaminated/ deteriorated	1. Prepare new mobile phase
(causing retention time to change)	
2. Obstructed guard or analytical column	2. a. Remove guard column and attempt analysis
	b. Replace guard if necessary
	c. If analytical column is obstructed, reverse
	and flush if problem persists, column may
	be fouled with strongly retained contaminants
	d. Use appropriate restoration procedure if
	problem persists, inlet is probably plugged
	e. Change frit or replace column

Table.35.All peaks too small

Potential cause	Solution
1. Detector attenuation too high	1. Reduce attenuation
2. Detector time constant too large	2. Use smaller time constant
3. Injection size too small	3. Use larger sample loop
4. Improper recorder connection	4. Use correct connection

Table.50.All peaks too large		
Potential cau	se	Solution
1. Detector attenuation to	o low	1. Use larger attenuation
2. Injection size too large		2. Use smaller sample loop
3. Improper recorder conr	lection	3. Use correct connection
	Fi	gure.15.Ghost Peaks
60 Gh is i 15 Pro 30 15 0	ost Peaks - Peaks w njected. Iblem - Dirty Mobile I	which appear even when no sample Phase 20% - 100% 15 17
		MeOH Gradient No Sample Injected

Table.36.All peaks too large

5. Problems with the injector: The problems are usually detected while using the injection valve. Table.37.Manual injector, hard to turn

1 ab	10.57 Ivrandar injector, naru to turn
Potential cause	Solution
1. Damaged rotor seal	1. Rebuild or replace valve
2. Rotor too tight	2. Adjust rotor tension

Ia	bie.58. Manual injector, nard to load
Potential cause	Solution
1. Valve misaligned	1. Adjust alignment
2. Blocked loop	2. Replace loop
3. Dirty syringe	3. Clean or replace syringe
4. Blocked lines	4. Clear or replace lines

Table.38.Manual injector, hard to load

Table.39.Auto injector will not turn

Potential cause	Solution
1. No air pressure (or power)	1. Supply proper pressure (power)
2. Rotor too tight	2. Adjust
3. Valve misaligned	3. Adjust alignment

Table.40.Auto injector, other problems

Potential cause	Solution
1. Blockage	1. Clear or replace blocked portion
2. Jammed mechanism	2. See service manual
3. Faulty controller	3. Repair or replace controller

6. Problems detected by smell, sight and sound: All senses must be used to identify HPLC problems. Habit of taking a few minutes each day need to be cultivated to expose all senses except taste to know how far the HPLC performs properly which help to identify problems quickly. For example, often a leak can be detected by smell before it is seen. The majority of problems are identified by sight which is shown the following tables.

ISSN: 0974-2115 Journal of Chemical and Pharmaceutical Sciences Table 41 Solvent small

1 able.41.Solvent smen	
Potential cause	Solution
	1. a. Check system for injector leaks
1 Look	b. Check system for loose fittings
1. Leak	c. Check pump for leaks, salt build-up, unusual noises
	d. Change pump seals if necessary
2. Spill	2. a. Check for overflowing waste container
	b. Locate spill and clean up

Table.42."Hot" smell

Potential cause	Solution
1. Overheating module	1. a. Check for proper ventilation, adjust
_	b. Check temperature setting, adjust
	c. Shut module off, see service manual

Table.43.Abnormal meter readings

Potential cause	Solution
1. Pressure abnormality	1. Mention in <u>Section 2</u>
2. Column oven problem	2. a. Check settings, adjust
	b. See service manual
3. Detector lamp failing	3. Replace lamp

Table.44.Warning lamps

Potential cause	Solution
1. Pressure limit exceeded	1. a. Check for blockage
	b. Check limit setting, adjust
2. Other warning lamps	2. See service manual

Table.45.Warning buzzers

Potential cause	Solution
1. Solvent leak/spill	1. Locate and correct
2. Other warning buzzers	2. See service manual

Table.46.Squeaks and squeals

Potential cause	Solution
1. Bearing failure	1. See service manual
2. Poor lubrication	2. Lubricate as necessary
3. Mechanical wear	3. See service manual

7. Details of Key problem areas and their preventive maintenance: The LC's operator and service manuals may have additional suggestions for preventive maintenance in addition to the causes and solutions detailed in the following tables mentioned bellow.

1 abie.47. Kesel voli	
Potential cause	Solution
1. Blocked inlet frit	1. a. Replace (3–6 months)
	b. Filter mobile phase, 0.5 µm filter
2. Gas bubbles	2. Degas mobile phase
Table.48.Pump	
Potential cause	Solution
1. Air bubbles	1. Degas mobile phase
2. Pump seal failure	2. Replace (3 months)
3. Check valve failure	3. Filter mobile phase; use inlet-line frit;
	keen spare

Table.47.Reservoir

Tuble Prinjector	
Potential cause	Solution
1. Rotor seal wear	1. a. Do not over tighten
	b. Filter samples

Table.50.Column	
Potential cause	Solution
1. Blocked frit	1. a. Filter mobile phase
	b. Filter samples
	c. Use in-line filter and/or guard column
2. Void at head of column	2. a. Avoid mobile phase $pH > 8$
	b. Use guard column
	c. Use pre column (saturator column)

Table.51.Detector

Potential cause	Solution
1. Lamp failure; decreased detector	1. Replace (6 months) or keep spare lamp
	response; increased detector noise
2. Bubbles in cell	2. a. Keep cell clean
	b. Use restrictor after cell
	c. Degas mobile phase

Table.52.General

Potential cause	Solution
1. Corrosive/abrasive damage	1. Flush buffer from LC and clean when not in use

CONCLUSION

HPLC is the widely utilized technique for the routine analysis of the drugs in pharmaceutical dosage forms. Several problems may occur while performing the method development by RP-HPLC. The above explained trouble shooting guidelines will render immense help to the analyst to maintain the HPLC system to overcome problems if any happened and also keep the system in smooth way of running which reduces the operation cost. The above said tips will assist to maintain the HPLC system perfectly and keeps the system out of routine problems which lessen the maintenance cost due to highest quality performance of the system. It leads to successful operation of the HPLC system if the principle "Commence with the suitable and apt questions seek the appropriate answers and ultimately the correct answers obtained will paves the way towards required solutions" is perfectly applied.

REFERENCES

Skoog DA, West DM, Holler FJ, Instrumental analysis, 2011, 8th edition, 896-906.

Gurdeep R.Chatwal, Instrumental methods of chemical analysis, 2002, 5th edition, 2.566-2.568.

B.K. Sharma, Insturmental methods of chemical analysis, 29th edition, Goyel publications, 2013, 286-385.

Sethi P.D. (2012) 'Quantitative Analysis of Drugs in Pharmaceutical Formulations'. 4th Edition, CBS Publishers Pvt. Ltd., New Delhi.22-43.

Ravisankar M, Sereya K, Ramaiah K, A review on preventive maintenance and trouble shooting of HPLC, International research journal of pharmacy, 2012, 3(9), 34-38.

Gupta V, Jain AD, Gupta K, Development and validation of HPLC method, International research journal of pharmaceutical & applied sciences, 2012, 2(4), 17-25.

Azim Md, Sabiretal, Method development and validation, International research journal of pharmaceutical analysis, 2013, 4(4), 40-46.

ISSN: 0974-2115

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Vibha gupta et al, Development and validation of HPLC method, international research journal of pharmaceutical applied sciences, 2012, 2(4), 17-25.

Ravisankar P, Gowthami S, Devala Rao G., A review on analytical method development, IJRPB, 2014, 2(3), 1183-1195.

Ranjit singh et al, HPLC method development and Validation, J Pharm Educ. Res, 2013, 4(1), 26-33.

Kaushal C, Srivasthava B, Aprocess of method development: A chromatographic approach, j Chem Pharm Res. 2010. 2 (2), 519-545.

M. S. Charde, R. T. Bande, A. S. Welankiwar, J. Kumar and R. D. Chakole, Review: common trouble shooting problems in RP-HPLC, IJAPA Vol. 4 Issue 1 (2014) 07-11.

Runser DJ, maintaining & troubleshooting HPLC systems, 2001, 10-16.

Christianson and Dolan J.W, LC-GC, 1997, 15 (10), 928-924.

Berry V.V, Dolan J.W LC, Liq.Chromatogr. HPLC Mag. (1983), 1, 406-407.

Dolan J.W, LC-GC, 1996, 14 (5), 378-382.

Shoup R and Bogdan M, LC-GC, 1989, 7 (9), 742-744.

Dolan J.W, LC trouble shooting, 1989, 7, 224.

Dalan J.W, L.C. Liq.Chromatogr. HPLC Mag. 1984, 2, 834-836.

Dalan J.W, Trouble shooting, L.C Liq. Chromatogr. HPLC Mag. 1985, 3, 1050-1052.

Tips and tricks of HPLC trouble shooting. Agilent technologies available from: www.chem.agilent.com